The miR-302/367 cluster: a comprehensive update on its evolution and functions.

نویسندگان

  • Zeqian Gao
  • Xueliang Zhu
  • Yongxi Dou
چکیده

microRNAs are a subclass of small non-coding RNAs that fine-tune the regulation of gene expression at the post-transcriptional level. The miR-302/367 cluster, generally consisting of five members, miR-367, miR-302d, miR-302a, miR-302c and miR-302b, is ubiquitously distributed in vertebrates and occupies an intragenic cluster located in the gene La-related protein 7 (LARP7). The cluster was demonstrated to play an important role in diverse biological processes, such as the pluripotency of human embryonic stem cells (hESCs), self-renewal and reprogramming. This paper provides an overview of the mir-302/367 cluster, discusses our current understanding of the cluster's evolutionary history and transcriptional regulation and reviews the literature surrounding the cluster's roles in cell cycle regulation, epigenetic regulation and different cellular signalling pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MicroRNA-302/367 Cluster Governs hESC Self-Renewal by Dually Regulating Cell Cycle and Apoptosis Pathways

miR-302/367 is the most abundant miRNA cluster in human embryonic stem cells (hESCs) and can promote somatic cell reprogramming. However, its role in hESCs remains poorly understood. Here, we studied functional roles of the endogenous miR-302/367 cluster in hESCs by employing specific TALE-based transcriptional repressors. We revealed that miR-302/367 cluster dually regulates hESC cell cycle an...

متن کامل

Evolutionary conservation and function of the human embryonic stem cell specific miR-302/367 cluster.

miRNA clusters define a group of related miRNAs closely localized in the genome with an evolution that remains poorly understood. The miR-302/367 cluster represents a single polycistronic transcript that produces five precursor miRNAs. The cluster is highly expressed and essential for maintenance of human embryonic stem cells. We found the cluster to be highly conserved and present in most mamm...

متن کامل

Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response.

MicroRNAs are important regulators in many cellular processes, including stem cell self-renewal. Recent studies demonstrated their function as pluripotency factors with the capacity for somatic cell reprogramming. However, their role in human embryonic stem (ES) cells (hESCs) remains poorly understood, partially due to the lack of genome-wide strategies to identify their targets. Here, we perfo...

متن کامل

Temporal and Spatial Expression Patterns of miR-302 and miR-367 During Early Embryonic Chick Development

The microRNAs (miRNAs) are small, non-coding RNAs that modulate protein expression by interfering with target mRNA translation or stability. miRNAs play crucial roles in various functions such as cellular, developmental, and physiological processes. The spatial expression patterns of miRNAs are very essential for identifying their functions. The expressions of miR-302 and miR-367 are critical i...

متن کامل

Expression of the miR‐302/367 cluster in glioblastoma cells suppresses tumorigenic gene expression patterns and abolishes transformation related phenotypes

Cellular transformation is initiated by the activation of oncogenes and a closely associated developmental reprogramming of the epigenetic landscape. Transcription factors, regulators of chromatin states and microRNAs influence cell fates in development and stabilize the phenotypes of normal, differentiated cells and of cancer cells. The miR-302/367 cluster, predominantly expressed in human emb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Open biology

دوره 5 12  شماره 

صفحات  -

تاریخ انتشار 2015